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Abstract. Hermitian symplectic spaces provide a natural framework for the extension theory of
symmetric operators. Here we show that Hermitian symplectic spaces may also be used to describe
the solution to the factorization problem for the scattering matrix on a graph, i.e. we derive a
formula for the scattering matrix of a graph in terms of the scattering matrices of its subgraphs.
The solution of this problem is shown to be given by the intersection of a Lagrange plane and a
coisotropic subspace which, in an appropriate Hermitian symplectic space, forms a new Lagrange
plane. The scattering matrix is given by a distinguished basis to the Lagrange plane.

Using our construction we are also able to give a simple proof of the unitarity of the scattering
matrix as well as provide a characterization of the discrete eigenvalues embedded in the continuous
spectrum.

1. Introduction

As is well known, Hermitian symplectic spaces provide a natural framework for the description
of the extensions of symmetric operators [1, 4, 6]. Here we discuss another possible application
of Hermitian symplectic spaces, namely to the problem of the factorization of the scattering
matrix for the Schrödinger operator on a graph. Using the fact that the Wronskian is a Hermitian
symplectic form, we construct a Hermitian symplectic space of solutions on the rays of the
graph. We use the term asymptotic Hermitian symplectic space in analogy with the asymptotic
symplectic space introduced by Novikov [5] in the case of the discrete Schrödinger operator
on a graph (in [5] the Wronskian is defined so that it is a symplectic form). The value of
this construction lies in the fact that the generalized eigenspace of a self-adjoint Schrödinger
operator forms a Lagrange plane in this space. This allows us to easily prove the unitarity
of the scattering matrix on the real axis in the spectral plane. Furthermore, we show that the
scattering matrix plays the role of the unitary matrix which parametrizes Lagrange planes [1].

We also use this construction to consider the factorization problem for graphs; that is, we
find a composition rule whereby the scattering matrix of a graph can be written in terms of
the scattering matrices of its subgraphs. This has already been considered in two papers by
Kostrykin and Schrader [3, 4] in the case of the Laplacian on a graph. We present a substantially
different approach, based on the properties of the asymptotic Hermitian symplectic space,
to what is essentially the same problem, the factorization of the Schrödinger operator on
graphs. Using the asymptotic Hermitian symplectic space we can express in a simple way the
generalized eigenspace of a graph in terms of the generalized eigenspaces of the subgraphs.
As the scattering matrix is defined by a distinguished basis for these eigenspaces, this in effect
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9016 M Harmer

provides us with a composition rule for the scattering matrix. In practice, however, we need
some linear algebra (simplified by our description of the generalized eigenspace) to write the
composition rule explicitly in terms of the scattering matrices.

Both our approach, and the approach used by Kostrykin and Schrader, give the same
answer. However, we believe that our approach is sufficiently novel to provide some new
insights. Our description of the composition rule also reveals a characterization of the discrete
eigenvalues embedded in the continuous spectrum of the non-compact graph.

2. The Hermitian symplectic space of asymptotic solutions

Here we study a connected non-compact graph, �. We assume that � consists of a compact
part, �c, composed of p finite interior edges. Attached to arbitrary vertices of the compact
part are n semi-infinite rays. Both p and n are finite. Functions on the graph are represented
by elements of the Hilbert space

H(�) = ⊕n
i=1L

2([0,∞))⊕p

j=1 L
2([0, aj ])

where the aj are the lengths of the interior edges. The elements ofH(�) are (n+p)-dimensional
vector functions and the inner product on H(�) is

(φ, ψ)� =
n∑
i=1

(φi, ψi)L2([0,∞)) +
p∑
j=1

(φn+j , ψn+j )L2([0,aj ])

where φi are the components of φ ∈ H(�).
Let us consider the symmetric Schrödinger operator, L0 in H(�)

L0ψi ≡ −d2ψi

dx2
i

+ qiψi for i = 1, . . . , n + p

with domain consisting of the smooth functions with compact support in the open intervals

D(L0) = ⊕n
i=1C

∞
0 ([0,∞))⊕p

j=1 C
∞
0 ([0, aj ]).

The potentials qi are supposed to be continuous real-valued functions which are integrable
with a finite first moment,∫

�i

(1 + x)|qi(x)| dx < ∞ (1)

where �i = [0,∞] or [0, ai]. It is easy to see that the deficiency indices of L0 are
(n + 2p, n + 2p). Consequently, we may parametrize the self-adjoint extensions of L0 by
unitary matrices U(n+ 2p) or, for separated boundary conditions, by U(d(1))⊕· · ·⊕U(d(m))
where d(i) is the degree of the ith vertex of �.

We construct a Hermitian symplectic space the elements of which are solutions on the
rays of the graph. This construction follows an analogous construction by Novikov [5] for the
discrete Schrödinger operator on graphs. Let ψ ′ denote the derivative of ψ with respect to x.

Definition 1. The 2-form 〈·, ·〉, defined on functions on the rays of the graph

〈φ,ψ〉 ≡
n∑
i=1

[
φ̄iψ

′
i − φ̄′

iψi
]
(xi) xi ∈ [0,∞) (2)

is a Hermitian symplectic form.
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As it stands this form is not well defined, it depends on the points xi chosen on each of the rays.
If, however, we consider the set of generalized eigenfunctions of L�0 on the rays for spectral
parameter λ,

H2n(�,L0, λ) =
{
φ ∈ ⊕n

i=1C
2
loc([0,∞)); −d2φi

dx2
i

+ qiφi = λψi

}

we see that the form is independent of xi—due to the constancy of the Wronskian. Obviously
H2n(�,L0, λ) is a 2n-dimensional vector space. We note, in particular, that the functions from
H2n(�,L0, λ) do not obey any specific boundary conditions at the vertices. Below we may
assume that the graph, �, and the potentials, L0, are given and simply write H2n(λ) or H2n.

Proposition 1. The vector space of generalized eigenfunctions on the rays H2n(�,L0, λ) for
real λ equipped with the Hermitian symplectic form (2) is a Hermitian symplectic space, called
the asymptotic Hermitian symplectic space.

To prove this statement we only need to show that the form is non-degenerate [1], which is
easy to see if we consider the basis of standard solutions {θi, φi}n, i.e. the solutions which
satisfy the boundary conditions

θi
∣∣
0 = 1 θi,x

∣∣
0 = 0

φi
∣∣
0 = 0 φi,x

∣∣
0 = 1

on ray i and are zero on the other rays. Furthermore, we note that this basis is canonical,

〈θi, φj 〉 = δij = −〈φi, θj 〉
〈θi, θj 〉 = 0 = 〈φi, φj 〉

soH2n is a canonical Hermitian symplectic space [1] (for brevity we just use the term Hermitian
symplectic space here).

More interesting are bases constructed from the Jost solutions. We denote by f±,j ∈
H2n(λ) the elements which are zero on all the rays except the j th one where they coincide with
the Jost solution with asymptotic behaviour

f±,j � e±ikxj

for x large and where λ = k2. The fact that our 2-form is defined using complex conjugation†
complicates the evaluation of it on the Jost solutions. We have

〈f+,i , f+,j 〉 = 2ikδij = −〈f−,i , f−,j 〉
〈f+,i , f−,j 〉 = 0 = 〈f−,i , f+,j 〉

(3)

but only for λ > 0 or k ∈ R.
We also construct a canonical basis using the Jost solutions; consider

ψ0,j = f+,j + f−,j
2

χ0,j = f+,j − f−,j
2ik

where j = 1, . . . , n. It is easy to see that this is a canonical basis, for all real λ (unlike the
relations for the Jost solutions).

Now let us suppose that we have defined L, a self-adjoint extension of L0, on the graph.
The generalized eigenfunctions of L are (not necessarily square-integrable) solutions of the
eigenvalue equation Lφ = λφ. We emphasize that such a φ is defined on the whole of �

† The operation f †(k) = f̄ (k̄) appears to be more natural in the definition of the Wronskian [1, 2]. As we will mainly
be considering λ > 0 or k ∈ R, we will not use this here.
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(not just the rays) and obeys some self-adjoint boundary conditions at the nodes of �. By
considering the restriction to the rays of the graph, a generalized eigenfunction of L may be
thought of as an element of H2n(λ).

Lemma 1. Given a self-adjoint extension L, the generalized eigenspace of L at some real λ
forms an isotropic subspace in H2n(λ).

Proof. We formally consider the boundary form of generalized eigenfunctions φ and ψ

(Lφ,ψ)� − (φ,Lψ)� =
n∑
i=1

[
φ̄iψ

′
i − φ̄′

iψi
] ∣∣

0 −
p∑
j=1

[
φ̄n+jψ

′
n+j − φ̄′

n+jψn+j
] ∣∣aj

0 . (4)

The self-adjoint boundary conditions are described by the vanishing of this form. Furthermore,
the second sum on the right-hand side vanishes by the constancy of the Wronskian on the edges
so we are left with

n∑
i=1

[
φ̄iψ

′
i − φ̄′

iψi
] ∣∣

0 = 〈φ,ψ〉 = 0. (5)

This completes the proof. �
The analogous statement for the discrete operator is proved in theorem 3 of [5]. In fact,

Novikov shows in this theorem that the eigenspaces form Lagrange planes for any complex
value of λ. In our case, the fact that the generalized eigenspaces form Lagrange planes for any
real λ is a simple corollary of the following lemma:

Lemma 2. Given a self-adjoint extension L, the vector space of generalized eigenfunctions of
L at real eigenvalue λ and with support on the rays of the graph is n dimensional.

Proof. Let us consider the boundary form on �, equation (4). We know that this defines a
non-degenerate Hermitian symplectic form in the 2(n + 2p)-dimensional space of boundary
values and hence a Hermitian symplectic space which we denote, in the proof of this lemma,
asH2(n+2p) [1, 4]—we emphasize that we are considering the space of boundary values, not the
asymptotic Hermitian symplectic space defined above. It is clear that the self-adjoint boundary
conditions are associated with (n + 2p)-dimensional Lagrange planes in this space. Let us
denote by P the (n + 2p)-dimensional Lagrange plane in H2(n+2p) associated with our chosen
self-adjoint L.

Now let us consider an arbitrary interior edge indexed by i of length a. This edge is
identified with the interval [0, a]. We say that a boundary condition ψ ∈ H2(n+2p) matches on
this edge if (

ψi |a
ψ ′
i

∣∣
a

)
=
(
θi |a φi |a
θ ′
i

∣∣
a

φ′
i

∣∣
a

)(
ψi |0
ψ ′
i

∣∣
0

)
.

Here ψi |0 and ψ ′
i

∣∣
0 are the components of ψ ∈ H2(n+2p) corresponding to one endpoint of

edge i, ψi |a and ψ ′
i

∣∣
a

are the components ofψ ∈ H2(n+2p) corresponding to the other endpoint
of edge i, φi(λ) and θi(λ) are the standard solutions on edge i and λ is fixed in the hypothesis.

It is clear that the boundary conditions on edge imatch iff there is a solution of (L−λ)f = 0
on i, namely

f (x, λ) = ψi |0 θi(x, λ) + ψ ′
i

∣∣
0 φi(x, λ)

whose boundary values at the ends of edge i are the same as the relevant components of
ψ ∈ H2(n+2p).
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The set of boundary conditions matching on allp interior edges of� and with support only
on these interior edges form an isotropic subspace in H2(n+2p) which we denote by N . This
fact is equivalent to the fact that the Wronskian of two generalized eigenfunctions is constant,

〈φ,ψ〉 =
p∑
j=1

[
φ̄n+jψ

′
n+j − φ̄′

n+jψn+j
] ∣∣aj

0 = 0.

Here the 2-form is the Hermitian symplectic form in the space of boundary conditions [4].
The dimension of N is 2p—there are two independent solutions for each edge. On the other
hand,N⊥ consists of the set of boundary conditions which match on each of the interior edges
but which may be arbitrarily prescribed on the rays.

First, let us consider P ∩ N⊥. These are boundary conditions which ‘match’ (N⊥), as
well as satisfy the self-adjoint boundary conditions associated with L (P ). Consequently, each
element of P ∩ N⊥ can be identified with a generalized eigenfunction of L on the graph �.
However, these boundary conditions may also describe solutions with support confined to the
interior edges of the graph, and we are only interested in solutions with support on the rays.

To pick only those solutions with support on the rays we should consider N⊥/N . By
lemma 5 (in the appendix) this is a Hermitian symplectic space of dimension 2n and may be
identified with the set of boundary conditions with support on the rays. Consequently, if we
consider the projection of P ∩N⊥ into N⊥/N we get only those eigenfunctions with support
on the rays and we know from theorem 2 (in the appendix) that this space has dimension n.

�
This, along with the fact that Lagrange planes are maximal isotropic subspaces, gives us

the desired result.

Corollary 1. Given the self-adjoint extension L, the space of generalized eigenfunctions of
L at real eigenvalue λ and with support on the rays of the graph forms a Lagrange plane in
H2n(λ).

Following Novikov we have an immediate application of these observations in the following
proof of the unitarity of the scattering matrix for λ > 0 or real k.

Suppose that we have an n-dimensional basis for the space of generalized eigenfunctions
of the form

ψi = f−,i +
∑
j

Sij f+,j .

We call Sij the scattering matrix. Then since the generalized eigenspace forms an isotropic
subspace

0 = 〈ψi, ψj 〉 =
〈
f−,i +

∑
l

Silf+,l , f−,j +
∑
m

Sjmf+,m

〉
= 2ik

[∑
l,m

S̄ilSjmδlm − δij
]

where we have used equation (3) for real k. Hence, the scattering matrix is unitary for λ > 0
or real k.

The original idea for this proof can be found in corollary 2 of [5] where the author uses
it to prove the symmetry of the scattering matrix (this is due to the fact that Novikov uses
symplectic geometry).

Similarly, we can find a condition for the symmetry of the scattering matrix. In the paper by
Kostrykin and Schrader [4] the authors show that if the boundary conditions of an operator can
be expressed using real matrices then the scattering matrix is symmetric. In [1] we show that
all self-adjoint boundary conditions can be parametrized by a unitary matrix U , the condition
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of Kostrykin and Schrader is equivalent to the symmetry U = UT of U , which may also be
written as the condition φ ∈ D(L) ⇔ φ̄ ∈ D(L). Consequently, the form 〈ψ̄i, ψj 〉 is also
zero,

0 = 〈ψ̄i, ψj 〉 =
〈
f+,i +

∑
l

S̄ilf−,l , f−,j +
∑
m

Sjmf+,m

〉
= 2ik

[∑
m

Sjmδim −
∑
l

Silδlj

]

showing that the scattering matrix is symmetric. This is analogous to Novikov’s proof of the
unitarity of the scattering matrix.

In the following sections we develop some new ideas based on Novikov’s construction.
In particular, we show a link between the scattering matrix and the Lagrange planes, and an
application to the problem of the factorization of the scattering matrix.

3. The scattering matrix as a parameter of the Lagrange planes

We emphasize that for the remainder of this paper we will assume that λ > 0 or k ∈ R0 ≡
R/{0}.

We have shown that the space of generalized eigenfunctions corresponds to a Lagrange
plane, and that the Lagrange planes are parametrized by a unitary matrix [1]. It is not difficult
to see that in the case of the asymptotic Hermitian symplectic space this unitary matrix is, in
fact, the scattering matrix—for λ > 0. First, we need some appropriate notation; we define a
new Hermitian symplectic form simply by dividing the old form by k,

〈φ,ψ〉 ≡ 1

k

n∑
i=1

[
φ̄iψ

′
i − φ̄′

iψi
]
(xi) xi ∈ [0,∞).

This is a Hermitian symplectic form as long as k is real and non-zero. In terms of this new
form the Jost solutions satisfy

〈f+,i , f+,j 〉 = 2iδij = −〈f−,i , f−,j 〉
〈f+,i , f−,j 〉 = 0 = 〈f−,i , f+,j 〉.

(6)

However, the canonical basisψ0,i , χ0,i defined above is no longer canonical. Instead we define
the new canonical basis

ψ0,j = f+,j + f−,j
2

χ0,j = f+,j − f−,j
2i

(7)

where j = 1, . . . , n. We also use the notation

ξ0,j = ψ0,j ξ0,j+n = χ0,j

where j = 1, . . . , n to denote these basis vectors. Let us denote by '0,n the Lagrange plane
spanned by the first n vectors of this basis. The precise relationship between the unitary
matrices and the Lagrange planes is given in corollary 2 of [1]. Here this result becomes:

Theorem 1. The Lagrange plane '0,n can be made to coincide with 'n, the Lagrange plane
corresponding to the generalized eigenspace of a self-adjoint L, by means of the Hermitian
symplectic transformation of the form

g = W�ĝW = W�

(
S 0

0 I

)
W = 1

2

(
S + I i(S − I)

−i(S − I) S + I

)
(8)

where S is the scattering matrix.
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In particular, the canonical basis {ξ0,i}2n
i=1 of equation (7) is taken into a canonical basis

{ξi}2n
i=1

ξi =
2n∑
j

gij ξ0,j

where the first n basis elements are the scattering wave solutions of L and so form a basis for
'n.

Proof. We substitute for g and ξ0,i to obtain for i = 1, . . . , n

ξi = 1

2

[
n∑
j

(S + I)ij

(
f+,j + f−,j

2

)
+

n∑
j

i(S − I)ij

(
f+,j − f−,j

2i

)]

= 1

2

[
n∑
j

Sij f+,j + f−,i

]
≡ ψi

which is the scattering wave solution. �

The remaining n terms of the new canonical basis, {ξi}2n
i=1, are denoted

χi = ξi+n = 1

2i

[
n∑
j

Sij f+,j − f−,i

]
.

Clearly, this construction only works for k ∈ R0 when the scattering matrix is unitary. In [1]
the matrix U plays the role of a unitary ‘parameter’ which we were free to choose in order to
select self-adjoint boundary conditions and hence a Lagrange plane. Here the unitary matrix
valued function S(k) of course depends in some complicated way on the potentials on the
edges and the boundary conditions at the vertices.

4. The factorization problem for the graph

Suppose that we are given two non-compact graphs �′ and �′′ with self-adjoint operators L′

and L′′ defined on them and associated scattering matrices S ′ and S ′′. Consider the procedure
of linking these graphs along p of their (truncated) rays to form a new graph �. We can
obviously define a self-adjoint operator on � by using the boundary conditions and potentials
of L′ and L′′, we denote this by L.

Given S ′ and S ′′ and the details of the linking, can we find the scattering matrix S of L?
We will show that it is possible to do so as long as the points at which rays are truncated in
order to form a linking edge are outside of the support of the potential.

4.1. Matching of asymptotic solutions on linking edges

Consider a ray r ′ attached to �′ and a ray r ′′ attached to �′′. We want to connect these two
rays together to form an edge of finite length in a new graph �.

We assume that the potentials on r ′ and r ′′ have finite support; supp(qr ′) ⊂ [0, a′] and
supp(qr ′′) ⊂ [0, a′′], respectively. We form the edges e′ = [0, a′], e′′ = [0, a′′] by truncating
the rays r ′, r ′′ at a′, a′′, respectively and the two graphs are linked simply by joining these
edges end to end, forming a new edge in the interior of � of length a′ + a′′.
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Definition 2. Given ψ�′ ∈ H2m′(�′, λ) and ψ�′′ ∈ H2m′′(�′′, λ) we say that these generalized
eigenfunctions match on the edge formed by joining e′ and e′′ end to end if

ψ�′
∣∣
a′ = ψ�′′

∣∣
a′′

dψ�′

dx

∣∣∣∣
a′

= − dψ�′′

dx

∣∣∣∣
a′′
. (9)

That is, the eigenfunctions ψ�′ , ψ�′′ match if together they represent a solution on the
augmented edge formed by joining e′ and e′′ end to end—this is different from the usage of
the term ‘match’ in lemma 2 where instead of the asymptotic Hermitian symplectic space we
were concerned with the space of boundary values. Nevertheless, there are formal similarities
between elements of the asymptotic Hermitian symplectic space which match and elements
of the Hermitian symplectic space of boundary values which match (although there is no
possibility of confusion as they are different spaces) which is why we use the same term.

When considering linking edges it is natural to consider the sum

H2m(λ) = H2m′(�′, λ)⊕H2m′′(�′′, λ)

here m = m′ +m′′. This is obviously also a Hermitian symplectic space with the form

〈φ�′ ⊕ φ�′′ , ψ�′ ⊕ ψ�′′ 〉 ≡ 〈φ�′ , ψ�′ 〉�′ + 〈φ�′′ , ψ�′′ 〉�′′

where 〈·, ·〉�′ and 〈·, ·〉�′′ are the Hermitian symplectic forms on �′ and �′′, respectively. Using
this notation the condition for matching is expressed in the following lemma.

Lemma 3. The element

ψ = ψ�′ ⊕ ψ�′′ ∈ H2m

matches on the edge formed by joining e′ and e′′ iff

〈ψ�′ ⊕ ψ�′′ , ζf+,r ′ ⊕ f−,r ′′ 〉 = 0

〈ψ�′ ⊕ ψ�′′ , f−,r ′ ⊕ ζf+,r ′′ 〉 = 0
(10)

where ζ = e−ik(a′+a′′) and f±,r ′ and f±,r ′′ are the Jost solutions on the rays r ′ ∈ �′ and r ′′ ∈ �′′,
respectively.

Proof. The Jost solutions f±,r ′ and f±,r ′′ form a basis on the rays r ′ and r ′′ so we can write

ψ�′
∣∣
r ′ = α′f+,r ′ + β ′f−,r ′ ψ�′′

∣∣
r ′′ = α′′f+,r ′′ + β ′′f−,r ′′ .

Since the support of the potentials on the rays r ′ and r ′′ is within the intervals [0, a′] and [0, a′′],
and remembering that the Jost solutions are continuous with continuous first derivatives, we
see that

f±,r ′
∣∣
a′ = e±ika′ df±,r ′

dx

∣∣∣∣
a′

= ±ike±ika′

f±,r ′′
∣∣
a′′ = e±ika′′ df±,r ′′

dx

∣∣∣∣
a′′

= ±ike±ika′′
.

In order for equation (9) to be satisfied we need the following conditions:

α′eika′
+ β ′e−ika′ = α′′eika′′

+ β ′′e−ika′′

α′eika′ − β ′e−ika′ = −[α′′eika′′ − β ′′e−ika′′]
or, solving for α′ and β ′,

ζ̄ α′ = β ′′ β ′ = ζ̄ α′′.
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On the other hand, using equation (6), we have

2iᾱ′ = 〈ψ�′ , f+,r ′ 〉�′ −2iβ̄ ′ = 〈ψ�′ , f−,r ′ 〉�′

2iᾱ′′ = 〈ψ�′′ , f+,r ′′ 〉�′′ −2iβ̄ ′′ = 〈ψ�′′ , f−,r ′′ 〉�′′

so equation (9) becomes

ζ 〈ψ�′ , f+,r ′ 〉�′ = −〈ψ�′′ , f−,r ′′ 〉�′′

−〈ψ�′ , f−,r ′ 〉�′ = ζ 〈ψ�′′ , f+,r ′′ 〉�′′

which, together with the fact that the Hermitian symplectic form is linear in its second argument,
gives the desired result. �

Corollary 2. The subspace ofH2m of elements with support confined to the rays r ′ and r ′′ and
which match is an isotropic subspace with basis

{
ζf+,r ′ ⊕ f−,r ′′ , f−,r ′ ⊕ ζf+,r ′′

}
.

Proof. The space of matching solutions is two dimensional since this is simply the space of
solutions on the augmented edge of length a′+a′′. The vectors we have given are independent—
the Jost solutions f+ and f− are independent—all that remains is to show that they match, which
is easily seen to be true if they are put into equation (10). Furthermore, the fact that these basis
vectors satisfy equation (10) means that they are contained in their orthogonal complement,
i.e. the subspace is isotropic. �

We consider linking p of the rays of �′ with p of the rays of �′′. Let us suppose that �′ has
m′ = n′ + p rays, while �′′ has m′′ = n′′ + p rays. We also denote m = m′ +m′′, n = n′ + n′′

so that m = n + 2p.
We choose p of the rays of �′ and p of the rays of �′′ and consider the procedure of

linking each ray of �′ with a ray of �′′ to form a new graph �. Let us denote by N ⊂ H2m the
subset of elements with support confined to the linking rays and which match on the linking
rays. Then, by a simple generalization of lemma 2, this subspace is isotropic with dimension
2p and we can write a basis for it in terms of the Jost solutions on the linking rays similar to
the basis given in the lemma.

On the other hand, by lemma 3 the elements ψ ∈ H2m which match on each of the linking
rays are just those elements ψ ⊥ N , i.e. the subspace N⊥. In summary, suppose we choose p
rays, {r ′i}pi=1, of �′ and p rays, {r ′′i }pi=1, of �′′, and consider linking r ′i to r ′′i for each i to form
the graph �. Then we have:

Corollary 3. The subspace N ⊂ H2m of elements with support confined to the linking rays
and which match on the linking rays is a 2p-dimensional isotropic subspace with basis

{
ζif+,r ′i ⊕ f−,r ′′i , f−,r ′i ⊕ ζif+,r ′′i

}p
i=1

where ζi = e−ikai and ai is the length of the edge formed by joining r ′i and r ′′i . Furthermore,
N⊥ ⊃ N consists of all of the elements of H2m which match on the linking rays.
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4.2. Description of the Lagrange plane of generalized eigenfunctions for the linked graph �

We suppose that on the graphs �′ and �′′ we have defined self-adjoint Schrödinger operators
L′ and L′′, respectively. In terms of these operators we can define the self-adjoint L on the
graph � formed by linking �′ and �′′ as described above.

We recall that any generalized eigenfunction of L can be written as a generalized
eigenfunction of L′ on �′ plus a generalized eigenfunction of L′′ on �′′ such that these two
functions match on all of the linking rays. This can be stated in terms of the asymptotic
Hermitian symplectic space: associated with L′ and L′′ are the Lagrange planes 'm′ ⊂
H2m′(�′) and 'm′′ ⊂ H2m′′(�′′), respectively. Furthermore, 'm = 'm′ ⊕ 'm′′ ⊂ H2m is
a Lagrange plane. Then the intersection of'm (the generalized eigenfunctions on �′ and �′′)
andN⊥ (the solutions which match on the linking rays) gives us the generalized eigenfunctions
of L on �.

Really, we get a little bit more: 'm ∩N⊥ may also contain solutions which have support
only on the linking edges, which, as we are only interested in solutions with support on the
semi-infinite rays, need to be discarded. In fact, we should not look for a solution in the space
H2m as it is not a suitable asymptotic Hermitian symplectic space for the linked graph �. In
particular,H2m has too high a dimension; the linked graph � has n = n′ +n′′ rays so we should
be working in an asymptotic Hermitian symplectic space of dimension 2n. Consider the space
N⊥/N . It has dimension 2n (by lemma 5), moreover, it consists of solutions that match on all
the linking rays. For this reason we state that N⊥/N is the asymptotic Hermitian symplectic
space for the linked graph �.

We have established that 'm ∩ N⊥ contains all of the generalized eigenfunctions of the
operator L on the linked graph� plus, possibly, some solutions with support on just the linking
rays. Projecting 'm ∩ N⊥ onto N⊥/N eliminates solutions with support only on the linking
rays and so will give us the generalized eigenspace of L on�which, by theorem 2 is a Lagrange
plane.

Corollary 4. The Lagrange plane ('m ∩ N⊥)/N in N⊥/N corresponds to the space of
generalized eigenfunctions with support on the rays for the operator L on the graph �.

It is easy to see that this description generalizes to the case where an arbitrary number of graphs
are linked. In this case'm is defined as the direct sum of the Lagrange planes associated with
each of these graphs and N is again an isotropic subspace which describes how the graphs are
to be linked.

4.3. Description of the scattering matrix for the linked graph �

For the sake of convenience let us suppose that we are linking just two graphs �′ and �′′ (the
case of an arbitrary number of graphs may be reduced to this case). As above, we assume
that �′ has m′ rays and �′′ m′′ rays and that we have selected p rays of each graph to connect
together. Consider the graph �′ ⊕ �′′ and let us index the rays of this graph according to the
scheme set out in figure 1.

The first p rays, which are part of graph �′, are to be linked to the next p rays, which are
part of graph �′′. The last n rays in this scheme form the infinite rays of the linked graph �,
the first n′′ of these coming from �′′ and the last n′ coming from �′.

In order to make the calculations below clearer, we introduce the following index sets:

I = {1, . . . , 2m}
IN = {1, . . . , 2p}
IN⊥ = {1, . . . , m, 2p +m + 1, . . . , 2m}.
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Figure 1. Labelling of the rays of the graphs.

We denote matrices in C
m×n by A(m,n) and matrices in C

n×n by A(n) where I(n) is the unit
matrix in C

n×n.
The Jost solutions {f±,i}mi=1 and, as defined in equation (7), the canonical basis {ξ0,j }2m

i=1
are labelled in the obvious way according to the scheme of the figure.

We have self-adjoint L′ and L′′ defined on �′ and �′′, respectively. Associated with these
operators we have the Lagrange planes'm′ ,'m′′ and canonical bases as described in theorem 1.
Then 'm′ ⊕'m′′ forms a Lagrange plane in H2m with canonical basis {ξj }2m

j=1 inherited from
the canonical bases associated with'm′ and'm′′ . The indexing of the basis elements {ξj }2m

j=1
follows the indexing given in figure 1. Specifically, suppose

S ′
(m′) =

(
S ′
(p) S ′

(p,n′)

S ′
(n′,p) S ′

(n′)

)

is the scattering matrix for L′ and

S ′′
(m′′) =

(
S ′′
(p) S ′′

(p,n′′)

S ′′
(n′′,p) S ′′

(n′′)

)

the scattering matrix for L′′ where the ordering of the entries follows the ordering described
in the figure—in particular, the first p entries of each matrix correspond to the p rays which
are to be linked. Then it is easy to see that the matrix g, which describes the transformation
from the basis {ξ0,j }2m

i=1 to the basis {ξj }2m
j=1 as in theorem 1, is of the form

g = W�ĝW = W�

(
S(m) 0

0 I(m)

)
W

where, following figure 1

S(m) =




S ′
(p) 0 0 S ′

(p,n′)

0 S ′′
(p) S ′′

(p,n′′) 0

0 S ′′
(n′′,p) S ′′

(n′′) 0

S ′
(n′,p) 0 0 S ′

(n′)


. (11)

We construct one more canonical basis, {ξN,j }2m
j=1, which allows us to express the isotropic

subspace N in simple terms. Recalling corollary 3, we see that the 2p elements defined by

ξN,j = ζjf+,j + f−,p+j

2
ξN,j+p = ζjf+,p+j + f−,j

2
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where j = 1, . . . , p, ζj = e−ikaj and aj is the length of the j th linked edge, form a basis for
N . Now we extend this to a canonical basis by defining the following n elements as identical
to the elements of the canonical basis {ξ0,j }2m

j=1

ξN,j = ξ0,j = f+,j + f−,j
2

where j = 2p+ 1, . . . , m. Then these elements span a Lagrange plane which, after theorem 1,
has associated with it the ‘scattering matrix’

T(m) =




0 ζ(p)

ζ(p) 0
0

0 I(n)


 (12)

where ζ(p) is a diagonal matrix with the entries on the diagonal being ζi . It is then a simple
matter to see that the matrix

gN = W�ĝNW = W�

(
T(m) 0

0 I(m)

)
W

takes the canonical basis {ξ0,j }2m
j=1 into a new canonical basis {ξN,j }2m

j=1. We have already
shown that the linear span

N =
∨
j∈IN

{ξN,j }

and it is not difficult to see, using the fact that this is a canonical basis, that

N⊥ =
∨
j∈IN⊥

{ξN,j }.

In order to obtain the scattering matrix for the linked graph we first express ξj in terms of
the ξN,j . Since

ξi =
2m∑
j=1

gij ξ0,j ξN,i =
2m∑
j=1

gN,ij ξ0,j

we can write

ξi =
2m∑
j,k=1

gijg
�
N,jkξN,k =

2m∑
j=1

hij ξN,j (13)

where

h = W�ĥW = W�

(
S(m)T

�
(m) 0

0 I(m)

)
W.

We use this equation to find an n-dimensional canonical basis for ('m∩N⊥)/N . Clearly, any
such basis can be written, modulo elements of N , as a linear combination of {ξj }mj=1—since
this set spans'm ⊃ ('m ∩N⊥). So there is a matrix R in C

n×m so that the (representative in
'm ∩N⊥ of the) ith basis element of ('m ∩N⊥)/N is

m∑
j=1

Rij ξj =
m∑
j=1

2m∑
l=1

RijhjlξN,l (14)

Here i = 1, . . . , n. What are the properties of the matrix R?
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(a) We can write the matrix R in the form

R = (
ρ(n,2p) I(n)

)
. (15)

First, we know that the subspace N⊥/N can be represented by the space

∨
j∈IN⊥ \IN

{ξN,j } =
∨

j∈IN⊥ \IN
{ξ0,j }.

Furthermore, ('m ∩N⊥)/N is a Lagrange plane in this space. Therefore, by theorem 1,
there is a unitary matrix S(n) such that the ith basis element of the Lagrange plane has the
form

1

2

[∑
j

S(n),ij f+,j + f−,i

]
.

Here i and j take values in the range {2p + 1, . . . , m}. However, this is equivalent to
equation (15). Really, the only way to ensure that f−,i occur only ‘on the diagonal’ is to
have I(n) in R, as shown.

(b) In order for these basis elements to be in 'm ∩ N⊥ we need the coefficients of ξN,l for
l ∈ I \ IN⊥ in equation (14) to be zero.

Let us express the matrix h in the following form:

h =
(

A(m) B(m)

−B(m) A(m)

)
=




A(2p) A(2p,n) B(2p) B(2p,n)

A(n,2p) A(n) B(n,2p) B(n)

−B(2p) −B(2p,n) A(2p) A(2p,n)

−B(n,2p) −B(n) A(n,2p) A(n)


. (16)

Using this representation, condition II can be expressed as

ρ(n,2p)B(2p) + B(n,2p) = 0

i.e.

ρ(n,2p) = −B(n,2p)B−1
(2p).

This gives us the matrix R so we can write

Rh = ( −B(n,2p)B−1
(2p)A(2p) + A(n,2p), −B(n,2p)B−1

(2p)A(2p,n) + A(n), 0,

−B(n,2p)B−1
(2p)B(2p,n) + B(n)

)
.

We are not interested in the first n× 2p block of this matrix as this represents the coefficients
of the terms in N . Let us write the second and fourth block as A and B, respectively. Then
from condition I, along with theorem 1, we see that

A = 1
2 (S(n) + I(n)) B = 1

2 i(S(n) − I(n))
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where, as above, S(n) is the desired scattering matrix of L on �. In other words, the scattering
matrix is

S(n) = A− iB = A(n) − iB(n) − B(n,2p)B−1
(2p)(A(2p,n) − iB(2p,n))

=
(
S ′′
(n′′) 0

0 S ′
(n′)

)
+

(
S ′′
(n′′,p)ζ̄(p) 0

0 S ′
(n′,p)ζ̄(p)

)(
Ip −S ′

(p)ζ̄(p)

−S ′′
(p)ζ̄(p) Ip

)−1

×
(

0 S ′
(p,n′)

S ′′
(p,n′′) 0

)

=
(
S ′′
(n′′) 0

0 S ′
(n′)

)
+

(
S ′′
(n′′,p) 0

0 S ′
(n′,p)

)(
ζ(p) −S ′

(p)

−S ′′
(p) ζ(p)

)−1

×
(

0 S ′
(p,n′)

S ′′
(p,n′′) 0

)
. (17)

The inverseB−1
(2p) which appears above obviously may not always exist. In fact,B(2p) does

not have an inverse iff'm ∩N is non-empty, i.e. iff we can find solutions with no support on
the external rays but support on the linking edges.

Lemma 4. The matrix B(2p) does not have an inverse iff 'm ∩N is non-empty.

Proof. Let us suppose that B(2p) does not have an inverse. That is we can find a non-zero
vector a such that

aT B(2p) = 0.

Then, by equations (13) and (16), we obtain

ψ = aT ·



ξ1

...

ξ2p


 ∈ N⊥.

Now ψ is clearly non-zero on the linking edges and has the form αif+,i on the n external
rays—this statement follows from the fact that the scattering waves ξi for i = 1, . . . , 2p have
this form on the n external rays. Also ψ is a generalized eigenfunction for L, since it is in
'm ∩N⊥. However, then, by theorem 1, all the αi = 0. Another way to see this is that, since
ψ is a generalized eigenfunction, it belongs to a Lagrange plane and consequently

〈ψ,ψ〉 = 0

which is equivalent to all the αi = 0. This gives us

ψ ∈ 'm ∩N �= 0

as required.
The converse statement follows simply from

ξN,i =
2m∑
j=1

h�ij ξj .

This completes the proof. �
This condition provides a means of identifying discrete eigenvalues embedded in the

continuous spectrum.
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Figure 2. The graph from example 1. Figure 3. The ‘Y’ graph.

Corollary 5. Given a graph � with m vertices we split � into m subgraphs �d(1), . . . , �d(m),
each consisting of just one vertex with d(i) rays attached—here d(i) is the degree of the ith
vertex of �. Then the zeros of the determinant of the matrix B(2p) for the set of subgraphs
�d(1), . . . , �d(m) give the discrete eigenvalues embedded in the continuous spectrum.

As we have mentioned above, equation (17) for the scattering matrix is the same, in essence,
as the equation given in the paper by Kostrykin and Schrader [3, 4]. In this paper the authors
consider how the scattering matrix for the Laplacian on a graph may be expressed in terms of the
scattering matrices of its subgraphs. Introducing a potential, as in the case of the Schrödinger
operator, does not introduce anything essentially new (as long as we assume, as we have done,
that the potentials have compact support and that we do not truncate rays inside the support).
Nevertheless, our approach is sufficiently novel, we believe, to be of independent interest.
Kostrykin and Schrader also note the presence of an inverse matrix in their formula (analogous
to our matrix B−1

(2p)) and refer to the condition of this inverse not existing as condition A.

Example 1. Consider the graph in figure 2 with potential equal to zero on all the edges, the
internal edges of equal length a and flux-conserved boundary conditions, that is

ψ1(0) = ψ3(0) = ψ4(0)

ψ2(0) = ψ3(a) = ψ4(a)

ψ ′
1(0) + ψ ′

3(0) + ψ ′
4(0) = 0

ψ ′
2(0)− ψ ′

3(a)− ψ ′
4(a) = 0.

The arrows indicate the orientation of the edges.

We can reconstruct the scattering matrix of the graph of figure 2 by linking two ‘Y’ graphs,
depicted in figure 3, according to the scheme of this section.

It is easy to see that the scattering matrices of such graphs have the form

S ′ = S ′′ =




− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3


.

So we obtain

S ′
(n′) = S ′′

(n′′) = ( − 1
3

)
S ′
(n′,p) = S ′′

(n′′,p) = (
2
3

2
3

) = S ′T
(p,n′) = S ′′T

(p,n′′)

S ′
(p) = S ′′

(p) =
(

− 1
3

2
3

2
3 − 1

3

)



9030 M Harmer

and, furthermore,(
S ′′
(n′′) 0

0 S ′
(n′)

)
=
(

− 1
3 0

0 − 1
3

)
(
S ′′
(n′′,p) 0

0 S ′
(n′,p)

)
=
(

2
3

2
3 0 0

0 0 2
3

2
3

)

(
0 S ′

(p,n′)

S ′′
(p,n′′) 0

)
=




0 2
3

0 2
3

2
3 0
2
3 0


.

Then from

(
ζ(p) −S ′

(p)

−S ′′
(p) ζ(p)

)
=




ζ 0 1
3 − 2

3

0 ζ − 2
3

1
3

1
3 − 2

3 ζ 0

− 2
3

1
3 0 ζ




where of course ζ = e−ika , we can easily show that(
ζ(p) −S ′

(p)

−S ′′
(p) ζ(p)

)−1

= ζ

(9ζ 2 − 1)(ζ 2 − 1)

×




9ζ 2 − 5 −4 −(3ζ + ζ̄ ) 2(3ζ − ζ̄ )
−4 9ζ 2 − 5 2(3ζ − ζ̄ ) −(3ζ + ζ̄ )

−(3ζ + ζ̄ ) 2(3ζ − ζ̄ ) 9ζ 2 − 5 −4

2(3ζ − ζ̄ ) −(3ζ + ζ̄ ) −4 9ζ 2 − 5


.

Putting all of these into equation (17) gives us the following form for the scattering matrix:

S = 1

γ

(
3(ζ̄ − ζ ) 8

8 3(ζ̄ − ζ )

)

where we have used γ = 9ζ − ζ̄ .
On the other hand, going back to the graph of figure 2, it is easy to see that this has a

scattering wave solution of the form

ψ1 = e−ikx +
3(ζ̄ − ζ )
γ

eikx

ψ2/3 = 2ζ̄

γ
e−ikx +

6ζ

γ
eikx

ψ4 = 8

γ
eikx .

This confirms the form for the scattering matrix.
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Appendix

Consider a canonical Hermitian symplectic space H2m with Lagrange plane'm and isotropic
subspace N of dimension q. Then N⊥/N is a canonical Hermitian symplectic space of
dimension 2n = 2(m− q) and ('m ∩N⊥) projects to a Lagrange plane in N⊥/N .

Lemma 5. N⊥/N is a Hermitian symplectic space of dimension 2n.

Proof. Since the form is non-degenerate

dim(N⊥) = dim(H2m)− dim(N) = 2m− q = 2n + q.

Now since N ⊂ N⊥, dim(N⊥/N) = dim(N⊥) − dim(N), which gives us the result for the
dimension. Clearly, the form inherited from H2m is uniquely defined since

〈φ + n1, ψ + n2〉 = 〈φ,ψ〉 φ,ψ ∈ N⊥ n1, n2 ∈ N.
To see non-degeneracy suppose there is some non-zero φ ∈ N⊥ which satisfies

〈φ,ψ〉 = 0 ∀ψ ∈ N⊥.

However, this simply means that φ ∈ N , i.e. φ is in the coset containing zero. �
Note that we have only shown thatN⊥/N is a Hermitian symplectic space, not a canonical

Hermitian symplectic space. In order to show that it is canonical we need only show (see [1])
that it contains a Lagrange plane:

Theorem 2. The subspace ('m ∩N⊥) ⊂ N⊥ projects to a Lagrange plane in N⊥/N .

Proof. We denote, somewhat imprecisely, the projection of ('m ∩ N⊥) into N⊥/N by
('m ∩ N⊥)/N . Clearly, ('m ∩ N⊥)/N is isotropic since 'm is a Lagrange plane. We
need only show that it has maximal dimension. Firstly,

dim(('m ∩N⊥)/N) = dim('m ∩N⊥)− dim('m ∩N⊥ ∩N)
= dim('m ∩N⊥)− dim('m ∩N).

Now, remembering that 'm is a Lagrange plane, it is easy to see that

('m ∩N⊥)⊥ = 'm +N.

So

dim('m ∩N⊥) = dim(H2m)− dim('m +N) = 2m− dim('m +N).

To proceed we use the basic vector space identity dim(P )+dim(N) = dim(P+N)+dim(P∩N),
which gives us

dim('m ∩N⊥) = 2m− [dim('m) + dim(N)− dim('m ∩N)].
Putting this into our equation for dim(('m ∩N⊥)/N) gives

dim(('m ∩N⊥)/N) = 2m− [dim('m) + dim(N)− dim('m ∩N)] − dim('m ∩N)
= 2m− dim('m)− dim(N)

= m− q = n.

This completes the proof. �
Due to the nature of this proof it appears that this result should also hold for symplectic

geometry. We also note that these results are only used above in the case where q = 2p is
even, although they clearly hold for any integral q.
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